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1. The differential equations of Dirac! for an electron have been general-
ized by Weyl? and Fock?® to the case of general relativity and further
studied by Schouten* and others. The theory which results makes use of
ideas which seem likely to be of considerable significance in differential
geometry in general. It is the purpose of this note to set forth some of the
requisite geometrical ideas in the simplest case, the case which can be
handled by direct generalization of the spinors defined by wvan der
Waerden.® ' The note is thus a sort of geometric commentary on the paper
of Weyl.

At each point of an underlying manifold with a coérdinate system (x1,
..., x*) there is a tangent space with codrdinates (dx?, ..., dx*). A differ-
ential form g;,dxidx', gives a Euclidean measure of distance, angle, etc.,
in each tangent space. The Riemannian geometry is the simultaneous
theory of all these Euclidean spaces.

The locus

g;jdxidxj =0 (11)

is a quadratic cone through the origin. Let us confine ourselves to the
relativity case, in which (1.1) is the light-cone and is of signature (—, —,
—, +). This means that there is a transformation of coérdinates, dx —>
X, in the tangent spaces which carries the cone (1.1) into

—(X)? - (X)) — (X2 + (X9 =0. (1.2)
Let us write the equations of this transformation in the form,
X = gldx'. (1.3)
We adopt the convention that the letters a, ..., & used as indices refer
to the coérdinate system X in the tangent space, and 2, ..., 2 used as
indices refer to the codrdinates of the underlying space or of the differ-
entials dx!, ..., dx*. We shall also use as far as conveniently possible,

the convention of Schouten that a geometrical object shall be indicated
in all coérdinate systems by the same carrier letter, different sorts of
coordinate systems being indicated by different alphabets or portions of
alphabets used as indices. Thus the quadratic form in (1.2) is
gabXaXb.
Also we have
L8385 = &ip
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where =1 0 0 0
_ 0-1 00
0 0 01
We make the definition
. gia = gai = gtjgg (1.5)
and ) )
% = g (1.6)
where, as usual ) )
g g = 5.
It then follows that
g = gig; = 8 and gig} = gb = 8. (L7

Having the existence of the quantities gj in one codrdinate system x
we are free to assume a transformation law for them. We assume that
gt g4 &% gi are four covariant vectors. It then follows that the com-
ponents of these vectors in any other codrdinate system will transform
the equation (1.1) in the new codrdinate system into (1.2). If we assume
also that g}, gi, gi, gi are four contravariant vectors, then (1.5), (1.6) and
(1.7) hold in all coordinate systems

From the fact that g}, g}, g}, g} are covariant vectors, it follows that
X1, X2, X3 X* are unaltered by any transformation of codérdinates x in
the underlying space. We therefore call them scalar coérdinates for the
tangent Euclidean space. They can be subjected to an arbitrary Lorentz
transformation .

X* = LiX® (1.8)

without altering anything that has been said, provided that we replace
(1.3) by _ o
' X* = gidx’

g5 = Lig;.

With respect to transformations of coordinates in the underlying space
the quantities Lj are 16 scalars.

The quantities g,;, g%, gi, etc., are components of the metric tensor with
respect to a in the scalar coérdinate system X, and with respect to ¢ in
the cooérdinate system dx.

2. The cone (1.1) is a system of straight lines through its vertex. The
structure of this system of lines may be made evident as follows. Con-
sider any 3-space S; in the tangent 4-space but not passing through the
origin (point of contact). Each line of the cone cuts S; in one and but

where
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one point and the set of all these points constitutes a quadric surface in
Ss.  Hence the relationships among themselves of the lines of the cone are
the same as those among the points of an ordinary quadric in a 3-space.

The property of a quadric which we wish to use is that it contains two
one-parameter systems of straight lines, the generators of the quadric.
Any line of one system cuts all the lines of the other system, and no two
lines of the same system intersect. If A is a parameter which designates
a line of the first system and p a parameter which designates a line of the
second system then the pair of numbers (A, u) designates a unique point
on the quadric. Inversely any point of the quadric determines a pair
of parameter values (A, u) since there is one line of each system through
such a point.

Going back to the cone (1.1), each point of the quadric is the trace in
Ss of a line of the cone and each line on the quadric is the trace of a plane
on the cone. Hence there are two systems of planes on the cone such
that two planes of the same system have no point in common except the
vertex and such that each plane of one system intersects each plane of the
other system in a line. The planes of one system can be designated by
the values N and those of the other system by u and the pair of values
(A, u) will determine a line of the cone.

In the case which we are studying, when the equation of the cone is
reducible to (1.2), the quadric in S; is real but the straight lines on it are
imaginary. The quadric is projectively equivalent to an ordinary sphere.
Thus the structure of the system of light lines through the vertex of (1.1)
is like that of the points on a sphere.

The properties which we have been inferring from theorems of geom-
etry can also be obtained by an elementary algebraic argument. Sup-
pose we set

Xt 4 1X? X3 + X*
L T o xu T T2 xus
V2 V2
: (2.1)
M = X?23 X3 __X4 = — X4,
V2 NG
Then
X138 Y14
2 X238 x| — (X2 — (X?)? — (X3 + (X9 2.2)

If this determinant is to vanish there must exist variables ¢!, {2, ¢3, ¢4,
such that

X1 = .‘pl‘p:{ X4 = ¢l¢4

(2.3)
X2 = Y3 X2 = ywa
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Solving the equations (2.1) we obtain
_ X14 + X23 ¢l¢4 + ¢2¢3

Xt = el _
V2 V2
X2 _ Xl4 — X23 _ l//llﬁ“ — ¢2¢3
oA =2 V=2
X3 _ X13 — X24 _ lllll//3 — '/,2‘#4 (24)
T A2 V2
X4 _ X23 + X24 _ ¢I‘I/3 +-¢2¢4

vz V2

as a parameter representation of the points on the cone (1.1).

If Y? and y* are held fixed and ¢! and 2 regarded as variable parametets
these equations say that the point (X!, X?, X3, X*) describes the plane
through the vertex and the points (Y4, —#p4, ¥3, ¥3) and (Y3, i3, —y¢4, ¥9).
If Y? and ¢* are multiplied through by the same factor, this plane is un-
altered. If, however, the ratio ¥?/¢* is changed the plane is changed and
there is one such plane for each value of this ratio. Moreover it is easy
to infer from the equations (2.4) that no two of the planes so obtained
have any part in common except (0, 0, 0, 0).

In like manner we see that there is another system of planes on the cone,
one for each value of y'/¢% Two planes, one from the first system de-
termined by (¥3, ¥*), and one from the second determined by (¢!, ) have
a line in common. This line is given by (2.4) with the understanding that
the coordinates ¢!, y? and ¢?3, y* may be multiplied through by an arbj-
trary factor. Thus (2.4) is a parameter representation of the points on
the light-cone.

From the geometry of the quadric we know that any linear transforma-
tion of the quadric into itself brings about a projective transformation of
the generating lines. With this suggestion we subject ¥! and 2 to a linear
transformation,

v = T4yP. 4,B =1,2). (2.5)
Substituting this in (2.4) we see that the X’s undergo a linear transforma-

tion whose coefficients can easily be calculated. The determinant in
(2.2) is evidently multiplied by the square of the determinant

T=|T4 (2.6)

when the transformation (2.5) is carried out. Hence the transformations
(2.5) induce transformations of the light-cone into itself. Similarly for
linear transformations of ¢? and y*.
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Instead of regarding (2.5) as a geometric transformation which permutes
one system of generating planes of the light cone among themselves, we
may regard it as a transformation of the parameters y!, y? into new pa-
rameters, i.e., as a change of the reference system for the light-planes. Be-
cause of the physical applications we will refer to ¢, 2 (and also ¥, ¢*) as
spin coordinates. Thus (2.5) can be regarded as a transformation of spin
coordinates which brings about a change of the spin-frame of reference.

We shall use the conventions of tensor algebra to indicate the well-
known transformation laws that depend on (2.5), for example, the co-
variant transformation '

‘PA = tg‘l’B (A) B = 1, 2) (2.7)
where .
t3TE = &¢. (2.8)

Let us define ¢,, as having the components
an =€ =0, e = —en =1

Then, evidently, the components ¢,, are the same in all spin-frames if we
assume the law of transformation of a relative covariant tensor of weight
-1

1 A,B
€cp = 7 €4BlctD.

o~

The weight is the exponent of the determinant,
= |4 (2.9)
In like manner we may define

el = 22 = (, €2 = —e2l = 1

and find
€ = APTSTS

the transformation law of a relative contravariant tensor of weight +1.
We shall use the two €’s to raise and lower indices as follows

epa¥® = Yy (2.10)
or = —y% Yo =Y!
AByp = ¢4 (2.11)

Notice that in lowering indices we sum with respect to the first index of
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€4 p while in raising indices we sum with respect to the second index of
e'B. This corresponds to the identities

—EABGCA = EABGAC = 6%. (2.12)

It must be remembered that raising indices increases the weight by
+1 and lowering them decreases it by —1. Thus if we assume y* to be
of weight +1/; then ¥, must be of weight —1!/,.

We actually do assume that the y* which enter the formulas (2.4) for
the parameterization of the light-cone are of weight 1!/, becatse this
means that a change of spin-frame causes the transformation

vt =Tyt (2.13)

which is of determinant 1 and therefore does not change the value of the
left-hand member of (2.2).
3. The equations (2.1) can be written in abbreviated form as

= gifxe (3.1)

in which A takes on the values 1 and 2, P the values 3 and 4 and a the
values 1, 2, 3, 4. Throughout this paper we shall use the early capital
letters, previous to P, as indices to denote the values 1 and 2, and the
later capital letters, from P onward, as indices to denote 3 and 4.

The coefficients of (3.1) for the four values of a constitute four 2-row
Hermitian matrices '

¢ - 73 (a)é - va (o) - valo ) s Jz((ézf)
3.2

The equations (2.4) which are inverse to (3.1) may be written,

X* = g4pX*P 3.3)
where

e O e 5 - B0 k- 50

Since (3.1) and (3.3) are inverse, we have
g gir = 5 \ (3.4)
and
gk gho = 855 (3.5)

Let us now apply the conventions agreed upon in the last section to
raising and lowering the indices. Thus

P BP
g4q. = €Bafa -
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This gives four matrices

(10 _1(z0)_ 1(01
T2 Vv2\0 i v2\1 0

1 (0 -1

V3 (1 o). (36)
If we calculate the other possible arrangements of indices we find that the
operation of raising and lowering indices as defined in the sections above

is consistent with the relations (3.4) and (3.5).
From the equation,

ng,fp = gAbP
it is evident that the g’'s which appear in this section are all components

of the metric tensor, some in the scalar and some in the spin-frames of
reference. For example, we have

g4PBQ = €ABEPQ- - (3.7
Also we have

058" = ¢¥ g5 + g5 7", (3.8)

as may readily be verified.

The components of the metric tensor in the scalar and the spin coordi-
nates are all constants, but this is not true of components, partly in the
dx coordinates and partly in the spin coordinates. For example the com-
ponents in the left-hand member of the equation

g = '
are not, in general, constants. Nevertheless we have
og" = g¥'eF + ¥ g
-of, in a matrix notation,
1.g" = ¢¢' + ¢
4. The condition that the codrdinates X! shall be real gives by (2 1)

that
X113 and X4 are real

and
X4 = X23%

where we are using the * to indicate con]ugate 1mag1nar1es
From (2.3) it follows that

3k — pyt V
Ve o @
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where k is real. The effect of changing the value of % is merely to shift
the point X along the same line of the light-cone. Hence no generality
is lost by assuming 2 = 1 as we now shall do. _
Hence the points X on the light-cone are given by
Xl 'l/l'pz* + ‘l/2¢1*

V2
Pz — Yk
Xt="T " -
V=2 .
x5 = PII* — Pk (.2)
= _—_\/E 4
s
Xt=ITr T ¥ |
V2

From the form of (2.4) it is clear that if ¢! and y? are multiplied by a
number ¢ and 3 and y* by 1/c the point X represented by (2.4) is un-
changed. But if the relation (4.1) is to be undisturbed, we must have

cc* = 1.

Hence the point X which is represented by (4.2) is unchanged if we multiply
Y1 and y? through by exp(i6) where 6 isreal. On the other hand a different
point on the same generating line of the cone is represented by these
equations if we multiply ¥! and y? by a constant whose absolute value is
not 1. Each value of the ratio y!/y? determines a line of the cone.

The parameters ¢ like the codrdinates X, are unaltered by changes of
coordinates in the underlying space-time. But in a given codrdinate
system x they have a degree of indetermination which is expressed by
writing i :
Yt = €' f!

'I/g = eix‘)fg (4'3)

where «° is an arbitrary real parameter. )

If f' and f? are taken to be complex functions of the real variables x!,
..., x* these equations determine a unique real point on the light-cone at
each point x. This point is the same for all values of x°. If we make a
transformation

2 = 20 + log p(x!, x2, 3, x4) - (4.4)

where log p is real then f! and f? are multiplied by 1/p but the same point
. on the same light-cone is represented by (4.3). Hence a pair of projective
scalars® Y! and 2 determine a unique point of the light-cone at each point
of space-time.
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We may, indeed, make the more general transformation

2 =20+ S Ndy (4.5)
instead of (4.4) which changes (4.3) into
4 = 4 exp. (ix® — i S \dx?) (4.6)

and introduces a parametrization of the light-cone which depends on the
path of integration, without changing the point on the light-cone repre-
sented by (4.2).

5. Let us now require of our transformations of spin-frame that the
reality condition of §4 shall be undisturbed. This means that Ty must
be related to T% by the equation

Tsi: = T3 (5.1)

Hence the determinant of the transformation of ¢ and y* is T*.
As indicated at the end of §2 we subject the spin parameters to the laws
of transformation

vio= TP (5.2)
§F = ¥/ Thye (5.3)
and, consistently with this,
XA = (4% XBOT4TE, (5.4)
which leaves the quadratic form
X13 X14
X23 X24
unaltered. Hence
Ly = (4% 2pg3°THTS (5.5)

is a Lorentz transformation.
6. We now have before us a new class of geometrical objects with the
following characteristics. Consider two functions,

Yt = e"x"fl(xl’ x2, x3, x%)
= P o, o, o). (©1)

If there is fixed a codrdinate system, a gauge and a spin-frame, then the
equations (6.1) together with (4.2) determine a definite point on each
light-cone. Under a transformation of coodrdinates or of gauge y' and
¥? behave like projective scalars of index 7, that is, the transformation is
effected by substituting

x° — log p(x)
& = 2(z) ©2)
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in (6.1). We may also allow the non-holonomic gauge transformation
(4.5). A change of the spin-frame requires that y! and 2 be replaced by
¢! and §? according to (5.2). The geometrical object having components
¥! and ¢2? subject to all these conditions, we will call a contravariant
spinor of the first order of weight 1/,. Spinors of other orders and weights
are defined by replacing (5.2) by the suitable linear relations after the
fashion of tensor algebra.

7. 1In order to have a theory of covariant differentiation of spinors we
have only to introduce the analogue of an affine connection. This is a
geometric object whose 20 components

Ahy (4,B=1,2; «a=0,1,2,3,4)

are functions of x!, x%, x3, x*, alone and under changes of spin-frame obey
the transformation law '

’ =C 4,8, D) rc
Ape = ABat[B) + S TA, (7'1)
ox®/ -

whereas under transformation of coérdinates and gauge they behave like
components of a projective covariant vector. We shall call this a spinor
connection of the first kind. ' ‘

It then follows by the same calculation as in tensor analysis’ that if
y* is a spinor of weight N

4
gx_“ + Aﬁa#’B - N Aga¢A = 'p,fz (7°2)

are the components of a geometric object which transform like those of a
spinor of weight IV with respect to the index 4 and like those of a projective
tensor with respect to . That is to say if we change codrdinates, gauge
and spin-frame all at once we have

VA = /YETS = (7.3)

We call y* the covariant derivative of vi.

Covariant differentiation of spinors of arbitrary order and weight is
defined analogously by the same formulas as in tensor analysis.” For
example, if x4 is a spinor with the law of transformation (5.4)

d XAP
ox”

1 1 ,
x4k = + A5XPF + AgaX*? — 5 ABXAT — S AGXAE. (74)

Our reality conditions make it necessary, of course, that

31 = Aa '~ (7.5)
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Hence
AR, = Adw (7.6)

If A%, are components of a spinor connection of the first kind the functions

1 .

I‘ga = Aga - § Agaa‘g (7'7)
are the components of a geometﬁc object which we shall call a spinor
connection of the second kind. Its law of transformation under changes of
spin-frame is

215 19 log ¢

Moo= (584 22) 18- 2%y
and it satisfies the invariant condition
T4a = 0. (7.9)

In case N = 1/, that is in case y* is a spinor of weight !/; and index 4,
(7.2) may be written

MA

ox”

+ IMgd® = v (7.10)

8. The formula (7.10) for covariant differentiation of a spinor can be
used to obtain a displacement formula as follows The equations

VA — ¥he. = 0 @.1)
where ¢, is an arbitrary projective vector such that
v =1, (8'2)

are invariant under transformations of codrdinates, gauge and spin-frame.
Also they are satisfied identically for « = 0. Hence the equations

Whi—vde) =0 (®3)

are invariant under all three types of transformation.
It is sufficient for our present purposes if we limit attention to the case
in which? '
T go = 0. . (8'4)

Under these conditions the components I'#; are unaltered by gauge trans-
formations and respond to transformations of coérdinates like the com-
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ponents of a covariant affine vector. Substituting (7.10) in (8.3) we now
obtain

B dx’ dx’

d" + TP D = io By, (8.5)

This is the formula for the displacement of the y’s which enter in the
parameterization (4.3) of the light-cone along a curve

= 2@).

Applying this and the corresponding formula for the conjugate imaginary
Y’s to

P yAyP

“we find the following displacement formula,

AP

A+ rgxer & d" + roJX"Q‘%j =0, (8.6)

which in the scalar cobrdinates of §1 becomes

ax° .
Ty + I‘b,-Xb i 0, 8.7

where
Ty = garThg + g4rT0igr . (8.8)
These functions satisfy the condition, '

Tg =0 (8.9)

in consequence of (7.9).

9. The equation (8.7) is the formula for an affine displacement and we
can in fact identify this displacement with the displacement by infinitesi-
mal parallelism determined by the gravitational tensor g;. The latter
is given by

. . k '

in the codrdinates x, where X* = giX® and I'; are the Christoffel symbols
of the second kind formed from g;;. Under the transformation (1.2) we find

a : b
Iy = (rwg:-' ait) g 9.2)

and also, as is well known, that these functions satisfy the condition (8.9).
The equation (8.8) now yields .

22 PTagho = T35 + Tods. 9.3
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Setting A = B and P = Q and summing we obtain

T4; = —Thi =\ (9.4)
We obtain
I3 — 05N = Valhigs Tebe (9.5)

by setting P = Q in (9.3) and summing. This equation determines I';
uniquely if in accordance with (7.9) we assume A; = 0. Similarly we
obtain

T5; = Y/iTegdPdo. (9.6)

Thus a displacement (9.1) determines a pair of conjugate spin displace-
ments

PB,C AQ R
Bl =0, vilR =
where

) .
vi2 = &2 (st + T = init)
and

vk = g (60-;, + I§; + wﬁ°>

The functions ¢; are completely arbitrary.
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